← Back to Kontasks
YOLOv8 Architecture Explorer
YOLOv8 anchor-free architecture with decoupled head details
Output
YOLO Architecture Explorer
Compare detection head designs across versions
YOLOv5YOLOv7YOLOv8YOLOX
Model Variants
Nano
3.2M
Small
11.2M
Medium
25.9M
Large
43.7M
XLarge
68.2M
Key Strengths
1
Anchor-free simplicity - no anchor tuning needed2
Decoupled head - faster convergence, better accuracy3
Unified CLI - single interface for train/val/predict/export4
Task versatility - detection, segmentation, pose, classificationvs YOLOv5
Drops anchors entirely. C2f replaces C3 for better gradient flow. Decoupled head vs coupled. Better small object detection.
vs YOLOv7
Simpler architecture (no E-ELAN). No auxiliary heads needed. Faster training. Easier deployment with unified API.
Quick Actions
Original Request
No layout configured
Details
Type
General
Status
Completed
Scope
vibetools
Tags
demoyoloarchitecturev8
Created
7 Jan 2026, 9:03 am
Updated
7 Jan 2026, 9:03 am
Timing
⏱️ 53.4s
0 tools
● TTFE 0%
● Thinking 100%
● Tools 0%
Created By
claude
Raw Data
{
"id": "88708ef5-88e4-4f81-a3ca-d91702b86c2a",
"type": "general",
"status": "completed",
"title": "YOLOv8 Architecture Explorer",
"description": "YOLOv8 anchor-free architecture with decoupled head details",
"context": {
"output": "<div style=\"background:#030712;color:#f3f4f6;padding:24px;border-radius:16px;font-family:system-ui,-apple-system,sans-serif;\"><div style=\"text-align:center;margin-bottom:24px;\"><h1 style=\"font-size:1.8rem;font-weight:bold;margin:0 0 8px 0;background:linear-gradient(to right,#60a5fa,#a78bfa,#fbbf24);-webkit-background-clip:text;-webkit-text-fill-color:transparent;background-clip:text;\">YOLO Architecture Explorer</h1><p style=\"color:#9ca3af;margin:0;\">Compare detection head designs across versions</p></div><div style=\"display:flex;justify-content:center;gap:8px;margin-bottom:24px;flex-wrap:wrap;\"><span style=\"background:#1f2937;color:#9ca3af;padding:8px 16px;border-radius:8px;\">YOLOv5</span><span style=\"background:#1f2937;color:#9ca3af;padding:8px 16px;border-radius:8px;\">YOLOv7</span><span style=\"background:#8b5cf6;color:#fff;padding:8px 16px;border-radius:8px;font-weight:500;box-shadow:0 4px 6px rgba(139,92,246,0.3);transform:scale(1.05);\">YOLOv8</span><span style=\"background:#1f2937;color:#9ca3af;padding:8px 16px;border-radius:8px;\">YOLOX</span></div><div style=\"background:#111827;border-radius:16px;border:1px solid #1f2937;overflow:hidden;\"><div style=\"padding:16px;border-bottom:1px solid #1f2937;background:rgba(139,92,246,0.1);\"><div style=\"display:flex;align-items:center;justify-content:space-between;flex-wrap:wrap;gap:12px;\"><div style=\"display:flex;align-items:center;gap:12px;\"><div style=\"width:12px;height:12px;border-radius:50%;background:#8b5cf6;\"></div><span style=\"font-size:1.25rem;font-weight:bold;\">YOLOv8</span><span style=\"color:#6b7280;\">(2023)</span></div><div style=\"display:flex;gap:16px;font-size:0.9rem;flex-wrap:wrap;\"><div><span style=\"color:#6b7280;\">Approach:</span> <span style=\"background:rgba(139,92,246,0.3);color:#8b5cf6;padding:2px 8px;border-radius:4px;font-weight:500;\">Anchor-free</span></div><div><span style=\"color:#6b7280;\">Head:</span> <span style=\"background:rgba(139,92,246,0.3);color:#8b5cf6;padding:2px 8px;border-radius:4px;font-weight:500;\">Decoupled</span></div></div></div></div><div style=\"display:flex;border-bottom:1px solid #1f2937;\"><div style=\"flex:1;padding:12px;text-align:center;border-bottom:2px solid #8b5cf6;color:#8b5cf6;font-weight:500;font-size:0.9rem;\">Architecture</div><div style=\"flex:1;padding:12px;text-align:center;color:#6b7280;font-size:0.9rem;\">Parameters</div><div style=\"flex:1;padding:12px;text-align:center;color:#6b7280;font-size:0.9rem;\">Strengths</div></div><div style=\"padding:24px;\"><div style=\"display:flex;gap:16px;align-items:flex-start;margin-bottom:24px;flex-wrap:wrap;\"><div style=\"flex:1;min-width:100px;\"><div style=\"background:#8b5cf6;color:#fff;padding:6px 12px;border-radius:6px;text-align:center;font-size:0.75rem;font-weight:600;margin-bottom:8px;\">BACKBONE</div><div style=\"border:1px solid #8b5cf6;color:#8b5cf6;background:rgba(139,92,246,0.1);padding:8px;border-radius:6px;text-align:center;font-size:0.8rem;margin-bottom:4px;\">CBS</div><div style=\"border:1px solid #8b5cf6;color:#8b5cf6;background:rgba(139,92,246,0.1);padding:8px;border-radius:6px;text-align:center;font-size:0.8rem;margin-bottom:4px;\">C2f</div><div style=\"border:1px solid #8b5cf6;color:#8b5cf6;background:rgba(139,92,246,0.1);padding:8px;border-radius:6px;text-align:center;font-size:0.8rem;\">SPPF</div></div><div style=\"display:flex;align-items:center;color:#4b5563;font-size:1.2rem;\">→</div><div style=\"flex:1;min-width:100px;\"><div style=\"background:#8b5cf6;color:#fff;padding:6px 12px;border-radius:6px;text-align:center;font-size:0.75rem;font-weight:600;margin-bottom:8px;\">NECK</div><div style=\"border:1px solid #8b5cf6;color:#8b5cf6;background:rgba(139,92,246,0.1);padding:8px;border-radius:6px;text-align:center;font-size:0.8rem;margin-bottom:4px;\">Upsample</div><div style=\"border:1px solid #8b5cf6;color:#8b5cf6;background:rgba(139,92,246,0.1);padding:8px;border-radius:6px;text-align:center;font-size:0.8rem;margin-bottom:4px;\">C2f</div><div style=\"border:1px solid #8b5cf6;color:#8b5cf6;background:rgba(139,92,246,0.1);padding:8px;border-radius:6px;text-align:center;font-size:0.8rem;\">Concat</div></div><div style=\"display:flex;align-items:center;color:#4b5563;font-size:1.2rem;\">→</div><div style=\"flex:1;min-width:100px;\"><div style=\"background:#8b5cf6;color:#fff;padding:6px 12px;border-radius:6px;text-align:center;font-size:0.75rem;font-weight:600;margin-bottom:8px;\">HEAD</div><div style=\"border:1px solid #8b5cf6;color:#8b5cf6;background:rgba(139,92,246,0.1);padding:8px;border-radius:6px;text-align:center;font-size:0.8rem;margin-bottom:4px;\">Decoupled (cls + reg)</div><div style=\"border:1px solid #8b5cf6;color:#8b5cf6;background:rgba(139,92,246,0.1);padding:8px;border-radius:6px;text-align:center;font-size:0.8rem;\">DFL Loss</div></div></div><div style=\"background:rgba(31,41,55,0.5);border-radius:12px;padding:16px;\"><h3 style=\"color:#8b5cf6;font-weight:600;margin:0 0 8px 0;font-size:0.95rem;\">Detection Head Details</h3><p style=\"color:#9ca3af;font-size:0.9rem;line-height:1.6;margin:0;\">YOLOv8 pioneered <strong style=\"color:#a78bfa;\">anchor-free detection</strong> in the YOLO family with a fully <strong style=\"color:#a78bfa;\">decoupled head</strong>. Classification and regression are separate branches, eliminating the coupling that slowed earlier versions. Uses <strong style=\"color:#a78bfa;\">Distribution Focal Loss (DFL)</strong> for bounding box regression, predicting distributions over box coordinates instead of direct values—this improves localization accuracy.</p></div></div></div><div style=\"background:#111827;border-radius:12px;padding:16px;margin-top:16px;border:1px solid #1f2937;\"><h3 style=\"color:#8b5cf6;font-weight:600;margin:0 0 12px 0;\">Model Variants</h3><div style=\"display:grid;grid-template-columns:repeat(5,1fr);gap:8px;\"><div style=\"background:#1f2937;padding:12px;border-radius:8px;text-align:center;\"><div style=\"color:#6b7280;font-size:0.7rem;text-transform:uppercase;margin-bottom:4px;\">Nano</div><div style=\"color:#8b5cf6;font-weight:bold;font-family:monospace;\">3.2M</div></div><div style=\"background:#1f2937;padding:12px;border-radius:8px;text-align:center;\"><div style=\"color:#6b7280;font-size:0.7rem;text-transform:uppercase;margin-bottom:4px;\">Small</div><div style=\"color:#8b5cf6;font-weight:bold;font-family:monospace;\">11.2M</div></div><div style=\"background:#1f2937;padding:12px;border-radius:8px;text-align:center;\"><div style=\"color:#6b7280;font-size:0.7rem;text-transform:uppercase;margin-bottom:4px;\">Medium</div><div style=\"color:#8b5cf6;font-weight:bold;font-family:monospace;\">25.9M</div></div><div style=\"background:#1f2937;padding:12px;border-radius:8px;text-align:center;\"><div style=\"color:#6b7280;font-size:0.7rem;text-transform:uppercase;margin-bottom:4px;\">Large</div><div style=\"color:#8b5cf6;font-weight:bold;font-family:monospace;\">43.7M</div></div><div style=\"background:#1f2937;padding:12px;border-radius:8px;text-align:center;\"><div style=\"color:#6b7280;font-size:0.7rem;text-transform:uppercase;margin-bottom:4px;\">XLarge</div><div style=\"color:#8b5cf6;font-weight:bold;font-family:monospace;\">68.2M</div></div></div></div><div style=\"background:#111827;border-radius:12px;padding:16px;margin-top:16px;border:1px solid #1f2937;\"><h3 style=\"color:#8b5cf6;font-weight:600;margin:0 0 12px 0;\">Key Strengths</h3><div style=\"display:grid;gap:8px;\"><div style=\"display:flex;align-items:center;gap:12px;padding:10px;background:rgba(139,92,246,0.1);border-radius:8px;\"><div style=\"width:28px;height:28px;border-radius:50%;background:#8b5cf6;display:flex;align-items:center;justify-content:center;font-weight:bold;font-size:0.8rem;\">1</div><span style=\"color:#e0e0e0;\">Anchor-free simplicity - no anchor tuning needed</span></div><div style=\"display:flex;align-items:center;gap:12px;padding:10px;background:rgba(139,92,246,0.1);border-radius:8px;\"><div style=\"width:28px;height:28px;border-radius:50%;background:#8b5cf6;display:flex;align-items:center;justify-content:center;font-weight:bold;font-size:0.8rem;\">2</div><span style=\"color:#e0e0e0;\">Decoupled head - faster convergence, better accuracy</span></div><div style=\"display:flex;align-items:center;gap:12px;padding:10px;background:rgba(139,92,246,0.1);border-radius:8px;\"><div style=\"width:28px;height:28px;border-radius:50%;background:#8b5cf6;display:flex;align-items:center;justify-content:center;font-weight:bold;font-size:0.8rem;\">3</div><span style=\"color:#e0e0e0;\">Unified CLI - single interface for train/val/predict/export</span></div><div style=\"display:flex;align-items:center;gap:12px;padding:10px;background:rgba(139,92,246,0.1);border-radius:8px;\"><div style=\"width:28px;height:28px;border-radius:50%;background:#8b5cf6;display:flex;align-items:center;justify-content:center;font-weight:bold;font-size:0.8rem;\">4</div><span style=\"color:#e0e0e0;\">Task versatility - detection, segmentation, pose, classification</span></div></div></div><div style=\"display:grid;grid-template-columns:1fr 1fr;gap:16px;margin-top:16px;\"><div style=\"background:#111827;border-radius:12px;padding:16px;border:1px solid #1f2937;\"><h3 style=\"color:#9ca3af;font-size:0.9rem;font-weight:600;margin:0 0 8px 0;\">vs YOLOv5</h3><p style=\"color:#6b7280;font-size:0.8rem;margin:0;line-height:1.5;\">Drops anchors entirely. C2f replaces C3 for better gradient flow. Decoupled head vs coupled. Better small object detection.</p></div><div style=\"background:#111827;border-radius:12px;padding:16px;border:1px solid #1f2937;\"><h3 style=\"color:#9ca3af;font-size:0.9rem;font-weight:600;margin:0 0 8px 0;\">vs YOLOv7</h3><p style=\"color:#6b7280;font-size:0.8rem;margin:0;line-height:1.5;\">Simpler architecture (no E-ELAN). No auxiliary heads needed. Faster training. Easier deployment with unified API.</p></div></div></div>",
"requestedAt": "2026-01-07T02:40:00.000Z",
"requestId": "62ab1638-81cf-46c8-be24-ee6b1d547205",
"choices": [
{
"label": "View YOLOv7",
"value": "Show me the YOLOv7 architecture with auxiliary heads",
"primary": true
},
{
"label": "View YOLOX",
"value": "Show me YOLOX - the first anchor-free YOLO"
},
{
"label": "Compare all",
"value": "Create a side-by-side comparison table of all 4 YOLO versions"
}
],
"turnTiming": {
"totalMs": 53366,
"ttfeMs": 56,
"thinkingMs": 53310,
"toolExecutionMs": 0,
"toolCallCount": 0,
"thinkingPct": 100,
"toolsPct": 0,
"ttfePct": 0
}
},
"createdBy": "claude",
"createdAt": "2026-01-06T23:03:19.689Z",
"updatedAt": "2026-01-06T23:03:24.872Z",
"requestId": "62ab1638-81cf-46c8-be24-ee6b1d547205",
"scope": "vibetools",
"tags": [
"demo",
"yolo",
"architecture",
"v8"
],
"targetUser": "claude"
}