← Back to Kontasks
YOLO Architecture Explorer - Kontask Card Demo
Interactive YOLO version comparison styled like the React example
Output
YOLO Architecture Explorer
Compare detection head designs across versions
YOLOv5YOLOv7YOLOv8YOLOX
Anchor-based
Predefined box shapes guide predictions. More stable training, but requires anchor tuning per dataset.
Anchor-free
Direct regression of box coordinates. Simpler design, no anchor hyperparameters, better generalization.
Why Opus vs Haiku Output Differs
| Aspect | Opus | Haiku |
|---|---|---|
| Instruction following | Follows CLAUDE.md templates precisely | May simplify or skip complex formatting |
| HTML complexity | Generates rich inline CSS | Often produces minimal HTML |
| Context capacity | Retains full template examples | May lose template details |
Key insight: The MCP tool is just a transport mechanism. It stores whatever HTML string Claude puts in context.output. The model quality determines the output quality.
Quick Actions
Original Request
No layout configured
Details
Type
General
Status
Completed
Scope
vibetools
Tags
demoyoloarchitecture
Created
7 Jan 2026, 8:44 am
Updated
7 Jan 2026, 8:44 am
Timing
⏱️ 81.5s
0 tools
● TTFE 0%
● Thinking 100%
● Tools 0%
Created By
claude
Raw Data
{
"id": "10383271-5fe6-4214-900a-b20961ccc58f",
"type": "general",
"status": "completed",
"title": "YOLO Architecture Explorer - Kontask Card Demo",
"description": "Interactive YOLO version comparison styled like the React example",
"context": {
"output": "<div style=\"background:#030712;color:#f3f4f6;padding:24px;border-radius:16px;font-family:system-ui,-apple-system,sans-serif;\"><div style=\"text-align:center;margin-bottom:24px;\"><h1 style=\"font-size:1.8rem;font-weight:bold;margin:0 0 8px 0;background:linear-gradient(to right,#60a5fa,#a78bfa,#fbbf24);-webkit-background-clip:text;-webkit-text-fill-color:transparent;background-clip:text;\">YOLO Architecture Explorer</h1><p style=\"color:#9ca3af;margin:0;\">Compare detection head designs across versions</p></div><div style=\"display:flex;justify-content:center;gap:8px;margin-bottom:24px;flex-wrap:wrap;\"><span style=\"background:#3b82f6;color:#fff;padding:8px 16px;border-radius:8px;font-weight:500;box-shadow:0 4px 6px rgba(59,130,246,0.3);transform:scale(1.05);\">YOLOv5</span><span style=\"background:#1f2937;color:#9ca3af;padding:8px 16px;border-radius:8px;\">YOLOv7</span><span style=\"background:#1f2937;color:#9ca3af;padding:8px 16px;border-radius:8px;\">YOLOv8</span><span style=\"background:#1f2937;color:#9ca3af;padding:8px 16px;border-radius:8px;\">YOLOX</span></div><div style=\"background:#111827;border-radius:16px;border:1px solid #1f2937;overflow:hidden;\"><div style=\"padding:16px;border-bottom:1px solid #1f2937;background:rgba(59,130,246,0.1);\"><div style=\"display:flex;align-items:center;justify-content:space-between;flex-wrap:wrap;gap:12px;\"><div style=\"display:flex;align-items:center;gap:12px;\"><div style=\"width:12px;height:12px;border-radius:50%;background:#3b82f6;\"></div><span style=\"font-size:1.25rem;font-weight:bold;\">YOLOv5</span><span style=\"color:#6b7280;\">(2020)</span></div><div style=\"display:flex;gap:16px;font-size:0.9rem;\"><div><span style=\"color:#6b7280;\">Approach:</span> <span style=\"background:rgba(59,130,246,0.3);color:#3b82f6;padding:2px 8px;border-radius:4px;font-weight:500;\">Anchor-based</span></div><div><span style=\"color:#6b7280;\">Head:</span> <span style=\"background:rgba(59,130,246,0.3);color:#3b82f6;padding:2px 8px;border-radius:4px;font-weight:500;\">Coupled</span></div></div></div></div><div style=\"display:flex;border-bottom:1px solid #1f2937;\"><div style=\"flex:1;padding:12px;text-align:center;border-bottom:2px solid #3b82f6;color:#3b82f6;font-weight:500;font-size:0.9rem;\">Architecture</div><div style=\"flex:1;padding:12px;text-align:center;color:#6b7280;font-size:0.9rem;\">Parameters</div><div style=\"flex:1;padding:12px;text-align:center;color:#6b7280;font-size:0.9rem;\">Strengths</div></div><div style=\"padding:24px;\"><div style=\"display:flex;gap:16px;align-items:flex-start;margin-bottom:24px;\"><div style=\"flex:1;\"><div style=\"background:#3b82f6;color:#fff;padding:6px 12px;border-radius:6px;text-align:center;font-size:0.75rem;font-weight:600;margin-bottom:8px;\">BACKBONE</div><div style=\"border:1px solid #3b82f6;color:#3b82f6;background:rgba(59,130,246,0.1);padding:8px;border-radius:6px;text-align:center;font-size:0.8rem;margin-bottom:4px;\">Focus</div><div style=\"border:1px solid #3b82f6;color:#3b82f6;background:rgba(59,130,246,0.1);padding:8px;border-radius:6px;text-align:center;font-size:0.8rem;margin-bottom:4px;\">CBS</div><div style=\"border:1px solid #3b82f6;color:#3b82f6;background:rgba(59,130,246,0.1);padding:8px;border-radius:6px;text-align:center;font-size:0.8rem;margin-bottom:4px;\">C3</div><div style=\"border:1px solid #3b82f6;color:#3b82f6;background:rgba(59,130,246,0.1);padding:8px;border-radius:6px;text-align:center;font-size:0.8rem;\">SPP</div></div><div style=\"display:flex;align-items:center;color:#4b5563;\">→</div><div style=\"flex:1;\"><div style=\"background:#3b82f6;color:#fff;padding:6px 12px;border-radius:6px;text-align:center;font-size:0.75rem;font-weight:600;margin-bottom:8px;\">NECK</div><div style=\"border:1px solid #3b82f6;color:#3b82f6;background:rgba(59,130,246,0.1);padding:8px;border-radius:6px;text-align:center;font-size:0.8rem;margin-bottom:4px;\">FPN</div><div style=\"border:1px solid #3b82f6;color:#3b82f6;background:rgba(59,130,246,0.1);padding:8px;border-radius:6px;text-align:center;font-size:0.8rem;\">PANet</div></div><div style=\"display:flex;align-items:center;color:#4b5563;\">→</div><div style=\"flex:1;\"><div style=\"background:#3b82f6;color:#fff;padding:6px 12px;border-radius:6px;text-align:center;font-size:0.75rem;font-weight:600;margin-bottom:8px;\">HEAD</div><div style=\"border:1px solid #3b82f6;color:#3b82f6;background:rgba(59,130,246,0.1);padding:8px;border-radius:6px;text-align:center;font-size:0.8rem;margin-bottom:4px;\">Conv layers</div><div style=\"border:1px solid #3b82f6;color:#3b82f6;background:rgba(59,130,246,0.1);padding:8px;border-radius:6px;text-align:center;font-size:0.8rem;\">Anchors (3 scales)</div></div></div><div style=\"background:rgba(31,41,55,0.5);border-radius:12px;padding:16px;\"><h3 style=\"color:#3b82f6;font-weight:600;margin:0 0 8px 0;font-size:0.95rem;\">Detection Head Details</h3><p style=\"color:#9ca3af;font-size:0.9rem;line-height:1.6;margin:0;\">YOLOv5 uses a coupled head with anchor boxes at 3 scales. Each grid cell predicts B bounding boxes, with each box predicting (x, y, w, h, objectness, class_scores). Anchors are computed via k-means clustering on the dataset.</p></div></div></div><div style=\"display:grid;grid-template-columns:1fr 1fr;gap:16px;margin-top:24px;\"><div style=\"background:#111827;border-radius:12px;padding:16px;border:1px solid #1f2937;\"><h3 style=\"color:#9ca3af;font-size:0.9rem;font-weight:600;margin:0 0 8px 0;\">Anchor-based</h3><p style=\"color:#6b7280;font-size:0.8rem;margin:0;line-height:1.5;\">Predefined box shapes guide predictions. More stable training, but requires anchor tuning per dataset.</p></div><div style=\"background:#111827;border-radius:12px;padding:16px;border:1px solid #1f2937;\"><h3 style=\"color:#9ca3af;font-size:0.9rem;font-weight:600;margin:0 0 8px 0;\">Anchor-free</h3><p style=\"color:#6b7280;font-size:0.8rem;margin:0;line-height:1.5;\">Direct regression of box coordinates. Simpler design, no anchor hyperparameters, better generalization.</p></div></div><div style=\"background:#1f2937;padding:16px;border-radius:8px;margin-top:24px;\"><h4 style=\"margin:0 0 12px 0;color:#fff;font-size:0.95rem;\">Why Opus vs Haiku Output Differs</h4><table style=\"width:100%;border-collapse:collapse;font-size:0.85rem;\"><tr style=\"border-bottom:1px solid #374151;\"><th style=\"text-align:left;padding:8px;color:#9ca3af;\">Aspect</th><th style=\"text-align:left;padding:8px;color:#9ca3af;\">Opus</th><th style=\"text-align:left;padding:8px;color:#9ca3af;\">Haiku</th></tr><tr style=\"border-bottom:1px solid #374151;\"><td style=\"padding:8px;color:#e5c07b;\">Instruction following</td><td style=\"padding:8px;color:#22c55e;\">Follows CLAUDE.md templates precisely</td><td style=\"padding:8px;color:#f97316;\">May simplify or skip complex formatting</td></tr><tr style=\"border-bottom:1px solid #374151;\"><td style=\"padding:8px;color:#e5c07b;\">HTML complexity</td><td style=\"padding:8px;color:#22c55e;\">Generates rich inline CSS</td><td style=\"padding:8px;color:#f97316;\">Often produces minimal HTML</td></tr><tr><td style=\"padding:8px;color:#e5c07b;\">Context capacity</td><td style=\"padding:8px;color:#22c55e;\">Retains full template examples</td><td style=\"padding:8px;color:#f97316;\">May lose template details</td></tr></table><p style=\"color:#9ca3af;margin:16px 0 0 0;font-size:0.85rem;line-height:1.6;\"><strong style=\"color:#fff;\">Key insight:</strong> The MCP tool is just a transport mechanism. It stores whatever HTML string Claude puts in <code style=\"background:#374151;padding:2px 6px;border-radius:3px;\">context.output</code>. The model quality determines the output quality.</p></div></div>",
"requestedAt": "2026-01-07T02:30:00.000Z",
"requestId": "66a311f9-a31f-46df-b79f-e5937a4d16f0",
"choices": [
{
"label": "View YOLOv8",
"value": "Show me the YOLOv8 architecture tab in the same style",
"primary": true
},
{
"label": "Compare all",
"value": "Create a side-by-side comparison of all 4 YOLO versions"
},
{
"label": "Improve Haiku",
"value": "How can we improve Haiku's kontask output quality?"
}
],
"turnTiming": {
"totalMs": 81543,
"ttfeMs": 54,
"thinkingMs": 81489,
"toolExecutionMs": 0,
"toolCallCount": 0,
"thinkingPct": 100,
"toolsPct": 0,
"ttfePct": 0
}
},
"createdBy": "claude",
"createdAt": "2026-01-06T22:44:21.304Z",
"updatedAt": "2026-01-06T22:44:29.735Z",
"requestId": "66a311f9-a31f-46df-b79f-e5937a4d16f0",
"scope": "vibetools",
"tags": [
"demo",
"yolo",
"architecture"
],
"targetUser": "claude"
}