Completed
on 7 Jan 2026, 8:44 am

Output

YOLO Architecture Explorer

Compare detection head designs across versions

YOLOv5YOLOv7YOLOv8YOLOX
YOLOv5(2020)
Approach: Anchor-based
Head: Coupled
Architecture
Parameters
Strengths
BACKBONE
Focus
CBS
C3
SPP
NECK
FPN
PANet
HEAD
Conv layers
Anchors (3 scales)

Detection Head Details

YOLOv5 uses a coupled head with anchor boxes at 3 scales. Each grid cell predicts B bounding boxes, with each box predicting (x, y, w, h, objectness, class_scores). Anchors are computed via k-means clustering on the dataset.

Anchor-based

Predefined box shapes guide predictions. More stable training, but requires anchor tuning per dataset.

Anchor-free

Direct regression of box coordinates. Simpler design, no anchor hyperparameters, better generalization.

Why Opus vs Haiku Output Differs

AspectOpusHaiku
Instruction followingFollows CLAUDE.md templates preciselyMay simplify or skip complex formatting
HTML complexityGenerates rich inline CSSOften produces minimal HTML
Context capacityRetains full template examplesMay lose template details

Key insight: The MCP tool is just a transport mechanism. It stores whatever HTML string Claude puts in context.output. The model quality determines the output quality.

Quick Actions

Original Request

No layout configured

Details

Type General
Status Completed
Scope vibetools
Tags demoyoloarchitecture
Created 7 Jan 2026, 8:44 am
Updated 7 Jan 2026, 8:44 am
Timing
⏱️ 81.5s
0 tools
TTFE 0% Thinking 100% Tools 0%
Created By claude

Raw Data

{
  "id": "10383271-5fe6-4214-900a-b20961ccc58f",
  "type": "general",
  "status": "completed",
  "title": "YOLO Architecture Explorer - Kontask Card Demo",
  "description": "Interactive YOLO version comparison styled like the React example",
  "context": {
    "output": "<div style=\"background:#030712;color:#f3f4f6;padding:24px;border-radius:16px;font-family:system-ui,-apple-system,sans-serif;\"><div style=\"text-align:center;margin-bottom:24px;\"><h1 style=\"font-size:1.8rem;font-weight:bold;margin:0 0 8px 0;background:linear-gradient(to right,#60a5fa,#a78bfa,#fbbf24);-webkit-background-clip:text;-webkit-text-fill-color:transparent;background-clip:text;\">YOLO Architecture Explorer</h1><p style=\"color:#9ca3af;margin:0;\">Compare detection head designs across versions</p></div><div style=\"display:flex;justify-content:center;gap:8px;margin-bottom:24px;flex-wrap:wrap;\"><span style=\"background:#3b82f6;color:#fff;padding:8px 16px;border-radius:8px;font-weight:500;box-shadow:0 4px 6px rgba(59,130,246,0.3);transform:scale(1.05);\">YOLOv5</span><span style=\"background:#1f2937;color:#9ca3af;padding:8px 16px;border-radius:8px;\">YOLOv7</span><span style=\"background:#1f2937;color:#9ca3af;padding:8px 16px;border-radius:8px;\">YOLOv8</span><span style=\"background:#1f2937;color:#9ca3af;padding:8px 16px;border-radius:8px;\">YOLOX</span></div><div style=\"background:#111827;border-radius:16px;border:1px solid #1f2937;overflow:hidden;\"><div style=\"padding:16px;border-bottom:1px solid #1f2937;background:rgba(59,130,246,0.1);\"><div style=\"display:flex;align-items:center;justify-content:space-between;flex-wrap:wrap;gap:12px;\"><div style=\"display:flex;align-items:center;gap:12px;\"><div style=\"width:12px;height:12px;border-radius:50%;background:#3b82f6;\"></div><span style=\"font-size:1.25rem;font-weight:bold;\">YOLOv5</span><span style=\"color:#6b7280;\">(2020)</span></div><div style=\"display:flex;gap:16px;font-size:0.9rem;\"><div><span style=\"color:#6b7280;\">Approach:</span> <span style=\"background:rgba(59,130,246,0.3);color:#3b82f6;padding:2px 8px;border-radius:4px;font-weight:500;\">Anchor-based</span></div><div><span style=\"color:#6b7280;\">Head:</span> <span style=\"background:rgba(59,130,246,0.3);color:#3b82f6;padding:2px 8px;border-radius:4px;font-weight:500;\">Coupled</span></div></div></div></div><div style=\"display:flex;border-bottom:1px solid #1f2937;\"><div style=\"flex:1;padding:12px;text-align:center;border-bottom:2px solid #3b82f6;color:#3b82f6;font-weight:500;font-size:0.9rem;\">Architecture</div><div style=\"flex:1;padding:12px;text-align:center;color:#6b7280;font-size:0.9rem;\">Parameters</div><div style=\"flex:1;padding:12px;text-align:center;color:#6b7280;font-size:0.9rem;\">Strengths</div></div><div style=\"padding:24px;\"><div style=\"display:flex;gap:16px;align-items:flex-start;margin-bottom:24px;\"><div style=\"flex:1;\"><div style=\"background:#3b82f6;color:#fff;padding:6px 12px;border-radius:6px;text-align:center;font-size:0.75rem;font-weight:600;margin-bottom:8px;\">BACKBONE</div><div style=\"border:1px solid #3b82f6;color:#3b82f6;background:rgba(59,130,246,0.1);padding:8px;border-radius:6px;text-align:center;font-size:0.8rem;margin-bottom:4px;\">Focus</div><div style=\"border:1px solid #3b82f6;color:#3b82f6;background:rgba(59,130,246,0.1);padding:8px;border-radius:6px;text-align:center;font-size:0.8rem;margin-bottom:4px;\">CBS</div><div style=\"border:1px solid #3b82f6;color:#3b82f6;background:rgba(59,130,246,0.1);padding:8px;border-radius:6px;text-align:center;font-size:0.8rem;margin-bottom:4px;\">C3</div><div style=\"border:1px solid #3b82f6;color:#3b82f6;background:rgba(59,130,246,0.1);padding:8px;border-radius:6px;text-align:center;font-size:0.8rem;\">SPP</div></div><div style=\"display:flex;align-items:center;color:#4b5563;\">→</div><div style=\"flex:1;\"><div style=\"background:#3b82f6;color:#fff;padding:6px 12px;border-radius:6px;text-align:center;font-size:0.75rem;font-weight:600;margin-bottom:8px;\">NECK</div><div style=\"border:1px solid #3b82f6;color:#3b82f6;background:rgba(59,130,246,0.1);padding:8px;border-radius:6px;text-align:center;font-size:0.8rem;margin-bottom:4px;\">FPN</div><div style=\"border:1px solid #3b82f6;color:#3b82f6;background:rgba(59,130,246,0.1);padding:8px;border-radius:6px;text-align:center;font-size:0.8rem;\">PANet</div></div><div style=\"display:flex;align-items:center;color:#4b5563;\">→</div><div style=\"flex:1;\"><div style=\"background:#3b82f6;color:#fff;padding:6px 12px;border-radius:6px;text-align:center;font-size:0.75rem;font-weight:600;margin-bottom:8px;\">HEAD</div><div style=\"border:1px solid #3b82f6;color:#3b82f6;background:rgba(59,130,246,0.1);padding:8px;border-radius:6px;text-align:center;font-size:0.8rem;margin-bottom:4px;\">Conv layers</div><div style=\"border:1px solid #3b82f6;color:#3b82f6;background:rgba(59,130,246,0.1);padding:8px;border-radius:6px;text-align:center;font-size:0.8rem;\">Anchors (3 scales)</div></div></div><div style=\"background:rgba(31,41,55,0.5);border-radius:12px;padding:16px;\"><h3 style=\"color:#3b82f6;font-weight:600;margin:0 0 8px 0;font-size:0.95rem;\">Detection Head Details</h3><p style=\"color:#9ca3af;font-size:0.9rem;line-height:1.6;margin:0;\">YOLOv5 uses a coupled head with anchor boxes at 3 scales. Each grid cell predicts B bounding boxes, with each box predicting (x, y, w, h, objectness, class_scores). Anchors are computed via k-means clustering on the dataset.</p></div></div></div><div style=\"display:grid;grid-template-columns:1fr 1fr;gap:16px;margin-top:24px;\"><div style=\"background:#111827;border-radius:12px;padding:16px;border:1px solid #1f2937;\"><h3 style=\"color:#9ca3af;font-size:0.9rem;font-weight:600;margin:0 0 8px 0;\">Anchor-based</h3><p style=\"color:#6b7280;font-size:0.8rem;margin:0;line-height:1.5;\">Predefined box shapes guide predictions. More stable training, but requires anchor tuning per dataset.</p></div><div style=\"background:#111827;border-radius:12px;padding:16px;border:1px solid #1f2937;\"><h3 style=\"color:#9ca3af;font-size:0.9rem;font-weight:600;margin:0 0 8px 0;\">Anchor-free</h3><p style=\"color:#6b7280;font-size:0.8rem;margin:0;line-height:1.5;\">Direct regression of box coordinates. Simpler design, no anchor hyperparameters, better generalization.</p></div></div><div style=\"background:#1f2937;padding:16px;border-radius:8px;margin-top:24px;\"><h4 style=\"margin:0 0 12px 0;color:#fff;font-size:0.95rem;\">Why Opus vs Haiku Output Differs</h4><table style=\"width:100%;border-collapse:collapse;font-size:0.85rem;\"><tr style=\"border-bottom:1px solid #374151;\"><th style=\"text-align:left;padding:8px;color:#9ca3af;\">Aspect</th><th style=\"text-align:left;padding:8px;color:#9ca3af;\">Opus</th><th style=\"text-align:left;padding:8px;color:#9ca3af;\">Haiku</th></tr><tr style=\"border-bottom:1px solid #374151;\"><td style=\"padding:8px;color:#e5c07b;\">Instruction following</td><td style=\"padding:8px;color:#22c55e;\">Follows CLAUDE.md templates precisely</td><td style=\"padding:8px;color:#f97316;\">May simplify or skip complex formatting</td></tr><tr style=\"border-bottom:1px solid #374151;\"><td style=\"padding:8px;color:#e5c07b;\">HTML complexity</td><td style=\"padding:8px;color:#22c55e;\">Generates rich inline CSS</td><td style=\"padding:8px;color:#f97316;\">Often produces minimal HTML</td></tr><tr><td style=\"padding:8px;color:#e5c07b;\">Context capacity</td><td style=\"padding:8px;color:#22c55e;\">Retains full template examples</td><td style=\"padding:8px;color:#f97316;\">May lose template details</td></tr></table><p style=\"color:#9ca3af;margin:16px 0 0 0;font-size:0.85rem;line-height:1.6;\"><strong style=\"color:#fff;\">Key insight:</strong> The MCP tool is just a transport mechanism. It stores whatever HTML string Claude puts in <code style=\"background:#374151;padding:2px 6px;border-radius:3px;\">context.output</code>. The model quality determines the output quality.</p></div></div>",
    "requestedAt": "2026-01-07T02:30:00.000Z",
    "requestId": "66a311f9-a31f-46df-b79f-e5937a4d16f0",
    "choices": [
      {
        "label": "View YOLOv8",
        "value": "Show me the YOLOv8 architecture tab in the same style",
        "primary": true
      },
      {
        "label": "Compare all",
        "value": "Create a side-by-side comparison of all 4 YOLO versions"
      },
      {
        "label": "Improve Haiku",
        "value": "How can we improve Haiku's kontask output quality?"
      }
    ],
    "turnTiming": {
      "totalMs": 81543,
      "ttfeMs": 54,
      "thinkingMs": 81489,
      "toolExecutionMs": 0,
      "toolCallCount": 0,
      "thinkingPct": 100,
      "toolsPct": 0,
      "ttfePct": 0
    }
  },
  "createdBy": "claude",
  "createdAt": "2026-01-06T22:44:21.304Z",
  "updatedAt": "2026-01-06T22:44:29.735Z",
  "requestId": "66a311f9-a31f-46df-b79f-e5937a4d16f0",
  "scope": "vibetools",
  "tags": [
    "demo",
    "yolo",
    "architecture"
  ],
  "targetUser": "claude"
}
DashboardReportsKontasksFlowsDecisionsSessionsTelemetryLogs + Go